Coupling in a dual metallo-dielectric nanolaser system.

نویسندگان

  • Suruj S Deka
  • Si Hui Pan
  • Qing Gu
  • Yeshaiahu Fainman
  • Abdelkrim El Amili
چکیده

To achieve high packing density in on-chip photonic integrated circuits, subwavelength scale nanolasers that can operate without crosstalk are essential components. Metallo-dielectric nanolasers are especially suited for this type of dense integration due to their lower Joule loss and nanoscale dimensions. Although coupling between optical cavities when placed in proximity to one another has been widely reported, whether the phenomenon is induced for metal-clad cavities has not been investigated thus far. We demonstrate coupling between two metallo-dielectric nanolasers by reducing the separation between the two cavities. A split in the resonant wavelength and quality factor is observed, caused by the creation of bonding and anti-bonding supermodes. To preserve the independence of the two closely spaced cavities, the resonance of one of the cavities is detuned relative to the other, thereby preventing coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient waveguide-coupling of metal-clad nanolaser cavities.

Many remarkable semiconductor-based nanolaser cavities using metal have been reported in past few years. However, the efficient coupling of these small cavities to waveguides still remains a large challenge. Here, we show highly efficient coupling of a semiconductor-based metal-clad nanolaser cavity operating in the fundamental dielectric cavity mode to a silicon-on-insulator waveguide. By engi...

متن کامل

Dynamic hysteresis in a coherent high-β nanolaser

The quest for an integrated light source that promises high energy efficiency and a fast modulation for high-performance photonic circuits has led to the development of room-temperature telecom-wavelength nanoscale lasers with a high spontaneous emission factor β. The coherence characterization of this type of laser using the conventional measurement of output light intensity versus input pump ...

متن کامل

Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: is bulk material a better choice for gain media?

Although multi quantum well (MQW) structure is frequently suggested as the appropriate medium for providing optical gain in nanolasers with low threshold current, we demonstrate that in general bulk gain medium can be a better choice. We show that the high threshold gain required for nanolasers demands high threshold carrier concentrations and therefore a highly degenerate condition in which th...

متن کامل

Hybrid optical antenna with high directivity gain.

Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna base...

متن کامل

An Accurate 2D Analytical Model for Transconductance to Drain Current ratio (gm/Id) for a Dual Halo Dual Dielectric Triple Material Cylindrical Gate All Around MOSFETs

A dual-halo dual-dielectric triple-material cylindrical-gate-all-around/surrounding gate (DH-DD-TM-CGAA/SG) MOSFET has been proposed and an analytical model for the transconductance-to-drain current ratio (TDCR) has been developed. It is verified that incorporation of dual-halo with dual-dielectric and triple-material results in enhancing the device performance in terms of improved TDCR. The ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 42 22  شماره 

صفحات  -

تاریخ انتشار 2017